DETERMINATION OF THERMAL CONDUCTIVITY
AND DIFFUSIVITY FROM MEASUREMENTS OF
UNSTEADY TEMPERATURES

Yu. L. Gur'ev and D, N, Chubarov UDC 536.2.08

Explicit formulas are presented for determining the thermal conduetivity and diffusivity from
measurements of unsteady temperatures in various shaped samples.,

Explicit expressions for determining the thermal diffusivity from measurements of unsteady temperatures
in various shaped samples were derived in[1] by using Laplace transforms. The same approach canbe used to
construct explicit relations for the simultaneous determinationof the thermal conductivity and diffusivity from
measurements of unsteady temperatures for a known heat load (heat-flux densities) on the testsample.

Suppose we know the law of variation of temperature of an unbounded flat plate when one surface receives
aknown heat flux and the other surface isthermally insulated. The Laplace transform of the relation between
the temperature at the pointx =5 and the heat flux g(t) at x =6 has the form (2]
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Taking the Inverse transform of (3) by using known inversion formulas [3], we obtain
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Equation (5) permits the determination of the thermal conductivity if the thermal diffusivity a is known,
which is not always the case. Since the values of a and A are assumed constant inthe temperature range under
investigation, Eq. (5) must give the same values at different times for the same T(§, t) andg(t), L.e., A; =7”j
and gj =aj, or atany times for twodifferent T(5, t) andq(t). Taking this into accountwe find from (5)

Leningrad Institute of Precision Mechanics and Optics. Translated from Inzhenerno-Fizicheskli Zhurnal,
Vol. 35, No. 2, pp. 250-256, August, 1978. Original article submitted July 11, 1977.

922 0022~0841/78/3502.-0922 $807.50 © 1979 Plenum Publishing Corporation



ACY] A a 7 : q 7
510%} i | 0 w0
60+ £ /

” \M

w0t

O
@y
®
3
) ©
3

250*t

20t N 7\ i

T s 12 R

Fig. 1. Calculated values of coefficients: 1)x, W/
m*°K (calculated value); 2) @, m%/h; 3) Acy, W2 H/
m?-°K {semibounded body); 4-6) assumed values
of A, a, and Acy, respectively; 7, 8) surface tempera-
ture of sample in twonumerical experiments, °K; 9,
10) thermal flux densities on the surface of sample in
two numerical experiments, W/m?; t is in sec.
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In Egs. (6) and (7) the subscripts iand j refer either to differenttimes and the same T(5, t)and q(t), or
toarbitrary times andtwo different T(6. t)and q(t). where inthe first case §; =6;, while in the second case oy
may or may not be equal to 6j . Depending onthe availability and quality of the experimental data, either of the
above schemes can be used tocalculate the parameters.

Because ofa certain complication of the final expressions there is a possibility of determining A without
firstcalculating ¢ or using the procedure describedabove. It followsfrom (1) that
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Denoting T3(6, s) times the left-hand side of (8) by F(s), making some simple substitutions, and using (1)and (2),
we obtain
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After taking inverse transforms it follows from (9) that
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Thus, from a measurement of the surface temperature of a flat plate and the heat flux incidentupon it,
Eq. (10) can be used to determine the thermal conductivity without considering and analyzing the solution of
the forward heating problem. Of course, it is easy to findthe diffusivity from (7)after determining the thermal
conductivity from (10).

A gimilar procedure can be used to obtain explicit relations when the temperature is measured on the
thermally insulated surface of the sample. In thiscase the starting pointis the relationbetween the Laplace
transforms of q(t) and T(0, t)
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Taking the inverse transforms of (14) we obtain
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Ifa is not knownbeforehand, the value ofthe thermaldiffusivity in Eq. (15) can be determined by the method
described above, equating the values of A in Eq. (15) for twodifferent times and the same T(§, t) andq(t), or
for two arbitrary times and different T(5, t) and q(t). Then
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where the subscripts i and j correspondto values of the integral combinations calculated for two different times

and the sameT(6, t) and q(t) or for arbitrary times and two different T(5, t) and q(t). The thermal diffusivity
can be determined another way also. It follows from (11) that
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After differentiating the left-hand side ofthis expression and using (11), we obtain
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Here ¢; and ¢, are determined from the following relations:
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Similar calculations lead to relations for determining A and a when the temperature at the point x =6 /2 isknown.
Omitting the intermediate calculations, we obtainfinally
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where ¢, ¢, and y are determinedfrom Egs. (15")-(15'") with T(6/2, t) substituted for T(0, 7). The value of

the thermaldiffusivity which is neededto calculate A from (18) can be determined either from Eq. (16) with
6i/2 substituted for 6;, or from the expression
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The values of ¢ and y represent the same integral combinations as (17') and (17") with T(5/2, t) substituted
for T(0, t). Equation (19) isobtained inthe same way as (17) by using the relation between the Laplace trans-
forms of q(t) andT(5/2, t).

(19)

Calculations similar to those presented above performed for a solid cylinder and sphere with a known
surface temperature and heat flux on the surface lead to relations of the form (5) and (6). Inthese equations §
mustbe replacedby the radius of the cylinder or sphere, f=! /5 fora cylinder and f= -—-1/2 for a sphere.

Thus, from the relations obtained, the values of the thermal conductivity and diffusivity canbe determined
simultaneously from a measurement of unsteady temperatures in various shaped samples. In contrast with
existing methods, the required parametersare expressed explicitly interms of experimentally known tempera-
tures and heat fluxes. The integral combinations entering the computing formulasare easily calculated ona
computer without constructing complicated algorithms. Figure 1 shows the results of computer calculations
of the thermophysical parameters of a flat plate thermally insulated from one side. The "experimental® values
of the temperatures were obtained by solving the forward problem for heat-flux densities which are constantand
vary linearly with time. The plate was 10 mm thick, hada thermal conductivity A=40 W/m . °K, and a ther-
mal diffusivity a=0.04 m?/h. Thedata in Fig. 1 show thatthe calculated values of A and a converge rather
rapidly to the values assumedto solve the forwardheating problem. It should be noted that the large difference
between the calculated and assumed values of A and @ atearly times result from the factthat at small valuesof t
the sample behaves thermally like a semibounded body whose surface temperature is determined by the combina-
tion Acy and not by A and g separately. Therefore, withthe calculationalaccuracy which can be achieved in



practice it is impossible in the initial period of heating or cooling to reveal the finite thickness of the sample
which is necessary for successful calculation with Egs. (6) and (7). On the other hand, the determination of
the parameter Acy from the expression
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which is easily obtained from the relation between Laplace transforms fora semibounded body [q(s)/T(s)}? =
s(Acy), shows that the calculated values of this parameter in the initial period of heating or coolingare in good
agreement with the values assumed in the solution ofthe forward problem. Thus, the simultaneous calculation
of Acy by Eq. (20) and X and a by (6) and (7) in the present case enables one to judge from the nature of the varia-
tion of these parameters both the accuracy of the computational scheme chosenand the legitimacy of using the
recommended relations as a whole for the available experimental data.

NOTATION

T, temperature of sample; x, coordinate; 5, thickness of flat plate; A, thermalconductivity; ¢, thermal
diffusivity; ¢, specific heat; v, density; q, heat flux density; t, 7, 6, time.
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PHOTOEMISSION METHOD OF MEASURING TEMPERATURE

K. N. Kasparov UDC 536.521.082.52

A photoemission method of measuring temperature is presented, andthe range of its application
Is indicated., Expressionsare obtainedfor calculating the systematicerror, anda nomogram is
given for determining it.

The photoemission method of measuring temperature for a continuous emission spectrum isbasedonthe
dependence of the energy distribution of photoelectrons in the photoemission effect on the energy distribution in
the spectrum of the radiation source {1, 2]. The temperature of a hody is determined from the change in the
energy distribution of photoelectrons, i.e., the increase in the number of photoelectrons with the maximum
kinetic energy Wmax =eUmax with increasing temperature.

By considering Einstein's equation for the photoelectric effect

eUpax =1 (v —vy) (1)
or
Winax = F1 (v)
together with Planck's equation for blackbody radiation
ro=[y(v, T) (2)

it isclear that an implicitrelation exists between the maximum kinetic energy of the photoelectrons and the tem-
perature T of the body whose radiation gave rise to the photoelectric effect. It follows from (2) thatthe frequency
v is a function of the spectral density of the blackbody radiation energy ryand the temperature

v=0(r T) @)
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