
D E T E R M I N A T I O N  OF T H E R M A L  C O N D U C T I V I T Y  

AND D I F F U S I V I T Y  F R O M  M E A S U R E M E N T S  O F  

U N S T E A D Y  T E M P E R A T U R E S  

Y u .  L .  G u r ' e v  a n d  D.  N .  C h u b a r o v  UDC 536.2.08 

Explicit  formulas  are  presented  for  determining the thermal  conductivity and diffusivity f rom 
measuremen t s  of unsteady t empera tu res  ha various shaped samples .  

Explici t  express  ions for  determining the thermal  diffusivity f rom measurement s  of unsteady t empera tu res  
ha various shaped samples were  der ived in [1] by using Laplace t r ans fo rms .  The same approach canbe used to 
construct  explici t  re lat ions for the simultaneous determinat ion of the thermal  conductivity and diffusivtty f rom 
measurements  of unsteady t empera tu res  for  a known heat load (heat-flux densities) on the tes t  sampte.  

Suppose we know the law of variat ion of t empera ture  of an unbounded flat plate when one surface  rece ives  
a known heat flux and the other  surface  is thermal ly  insulated~ The Laplace t r ans fo rm of the relat ion between 
the tempera ture  at  the pointx =5 and the heat flux q(t) at x =5 has the form [2] 

q (s) 
V~7"(6, s) 

DifferentLat[on of (i) with r e spec t  to s gives 

q' (s) T (8, s) - -  q (s) T' (8, s) 

)~ t h l / ~  & (I) 
= 1/-~ 

q(s) ~,6 ( l - t h 2  [//f--~aa 6 ) .  (2) 
]/-sT z (6, s) 2s V-sT (6, s) - 2a ]/}- 

Using the fact that q(s)--h4~/ 'a 'T (6, s) tanhVs/a6,  we obtain f rom (2) 

1 h5 T2r s) 8 q~(s) 
q' (s) T (6, s) - -  q (s) 7'  (6, s)-- ~-s q (s) T (8, s) ----- 2---'a- )~ 2s 

Taking the Inverse t r ans form of (3) by using known inversion formulas  [3], we obtain 

6 
~,~__~6, ( t ) -  q~ ( t ) ) ,  - y v (t) = o, 
2a 

(3) 

(4) 

f rom which 

) ,= a q~(t) ~ | S [  aq~(t) I s a?(t) (5) 
6 , ( t )  ' V [ ~ 1  + ap(t-----~ 

Here r ~0, and T r ep re sen t  the follow ing integral  comb inations: 
L 

~(t) = .[ r (8 ,  t - - r )  7"(6, ~) dr, 15') 
0 

~(t)= j" {[o( t - - r )T(6 ,  r)--q( '~)T(~, t - - r ) ]  T--fT(8, t - - z )  S q(O) dO } dl:, (5") 
0 0 

i 7(0 = S qt t - - z )  q(O) dOdr, f = 1/2. (5") 
0 0 

Equation (5) permi ts  the determinat ion of the thermal  conductivity if the thermal  dfffusivity a is known, 
which is not always the ease .  Since the values of a and X are  assumed constant inthe t empera tu re  range under 
investigation, Eq. (5) mus t  give the same values at different  t imes for the same T(6, t) andq(t),  i . e . ,  X i =~j 
and ai =aj, or a tany  tkmes for  two different  T(5, t) andq(t) .  Taking this knto aceountwe find f rom (5) 
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Fig. 1. Calculated values of coefficients- 1) X, W/  
m . ~  (calculated value); 2)a ,  m2/h; 3) Xc% W2*h/ 
m 4.~ (semibounded body); 4-6) assumed values 
of ~., a, and XcT, respectively; 7, 8) surface tempera-  
ture of sample in twonumerical  experiments,  OK; 9, 
10) thermal  flux densities on the surface of sample in 
two numerical  experiments,  W/m2l t is in see. 

6s %,i, ' [ t - % ? s  ] 

2 *,f~, [1 5, 8 J * J @ i ]  *i(~j (6) 

7,28 71~ ~ ~',28 j *.f o, ] o.o= [ ] <., 

In Eqs. (6) and (7) the subscripts i and ] re fer  ei ther  to different times and the same T(6, t)and q(t), or 
to a rb i t ra ry  t imes and two different T(6. t) and q(t). where in the f i rs t  case 6i = 5j, while in the second case 5 i 
may or may not be equal to 5j. Depending on the availability and quality of the experimental  data, ei ther of the 
above schemes can be used to calculate the paramete rs .  

Because of a certain complication of the final expressions there is a possibility of determining X without 
f i rs tcalculat ing a or using the procedure describedabove.  It follows from (1) that 

1[ q(s) ] 'V's}" = - -  62~sh ] f s~  6 
V s T  (6, s) 2a ]/-m ca 3 Vs,-~a 6 (8) 

Denoting T3(6, s) t imes the left-hand side of(8) by F(s), making some simple substitutions, and using (1) and (2), 
we obta in 

6 [ 1 q(s) T(6, s )]  
- -  sF  (s) = ~ q (s) q' (s) T (6, s) - -  q (s) r '  (6, s ) -  - -~ s ' 

sF (s) = sq" (s) T ~ (6, s) - -  sq (s) T" (6, s) T (6, s) - -  2sq' (s) T' (6, s) T (6, s) -? 2sq (s) T'" (6, s) (9) 

1 [q'(s)T~r s)--q(s)T'(6, s) T(6, s) q(s) TZ_(6, s) ] .  
2 [ s J 

After taking inverse t ransforms it follows from (9) that 

= 6 qh (t____~) , (10) 
r (t) 

where ml and ~b i represent  the following integral combinations: 
0 

% ( O = ~ q ( t - - t )  O[T(6, O)q(t--O)--q(O)T(6, t - - O ) l - - ~ -  
0 0 

~( t l= . i 'T (6 ,  t--~) (t--O) z T(6, "~--0) dq(O) q(t--O) dT(6, O) 
dO dO 

0 0 

1 o | t 
_ 1 0 [ q ( 0 )  T((5, x- -0) - -T(6 ,  0) q( --0)] + - ~  T(6, x--O) .f q (~) d~ ldOd'c + 2 S (t--x) T(6' l - - z )  

2 o o 
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�9 [ • S(T--O) q('~--O) dT(O, O) - -T(6 ,  r--O) dq(O)]dOd'c. (10") 
o dO dO ] 

Thus,  f rom a measu remen t  of the surface t empera tu re  of a flat plate and the heat flux incidentupon it, 
Eq.  (10) can be used to determine the thermal  conductivitywithout considering and analyzing the solut ionof 
the forward heating problem.  Of course ,  it is easy to find the diffusivity f rom (7)af ter  determining the thermal  
conductivity f rom (10). 

A s imi la r  procedure  can be used to obtain explici t  relat ions when the t empera tu re  is measured  on the 
thermal ly  insulated surface of the sample .  In this case the s tar t ing point is the re la t ionbetween the Laplace 
t r ans fo rms  ofq(t) and T(0, t) 

It follows from (11) that 

q (s) ---- ~. V'~-a sh V ~  6T (0, s). 
(11) 

] / 'sT (0, s) ] '  )~ 8 ch V-s~ 6 
q (s) j Vh- 2 V's-a sh 2 V-}-]-a 6 (12) 

After  multiplying both sides of this equation by 24"~'5 and differentiat ing with r e spec t  to s, we obtain 

4~. V-~-dF ' (s) - 1 ~_ 2 
8 2 s h V ~ 6  ' sh3Vs~6 ' (13) 

where  

F, ( s ) =  {[ V-STq (s)(0' s ) . ] "  V-s}" . 

After multiplying both sides of (13) by q 3 ( s ) / ( s / a ) r  and using (11) we find 

a 
2a----~-2 F 2 (s) : }.2sTa (0, s) + --~ q2 (s) T (0, s), (14) 
62 

r '  (0, s) q~ (s) - -  T (0, s) q' (s) q (s) 
F2 (s) = 

2 

- -q  (s) IT(0, s) q' (s)--  7' (0, s) q(s)] 
+ sq (s) iT" (0, s) q (s) - -  T (0, s) q" (s)] 

-4- 2sq' (s) iT (0, s) q' (s) - -  T' (0, s) q (s)]. 

Taking the inverse t r ans fo rms  of (14)we obtain 

/-2~: % ( 0  a ~,.~ (t) 
1 /  l /  "~2 (t) 2 ~2(t) (15) 

where r r and 2/2 represent the following integral combinations: 

t dT (o, O) 
' 3  (t) = ~ T (0, t - -  z),I" T (0, �9 - -  O) dOd% 

dO (15') 
0 0 

t T 

v~ (t) = ~ T (0, t - -  T) .f q (~ --  0t q (0) d0d~, (15") 
0 0 

t bT{3-2- (p~ (t) = ~ q (t - -  ~) .t 0 [q (0) T (0, z - -  0) - -  T (0, 0) q (v - -  0)] 
0 

dO dO o 

• [q (T- -0)  dT(O, O) r (o ,  'r--O) dq(O) ] dOdl:. (15") 
L dO dO 3 

If a is not knownbeforehand, the value of the thermal  diffusivity in Eq. (15) can be determined by the method 
descr ibed  above, equating the values of X in Eq.  (15) for  two different  t imes and the same T(6, t) andq(t), or  
for  two a r b i t r a r y  t imes and different  T(8, t) and q(t). Then 
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~,~ ?~ .% % 6~. -1 
a: 

4 *i *J *~ *J 6~ 
9 (16) 

where  the subscr ip t s  i and j co r re spond  to values of the integral  combinat ions calculated for  two different  t imes  
and the s a m e T ( 5 ,  t) and q(t) or  for  a r b i t r a r y  t imes  and two different  T(5, t) and q(t). The t he rma l  diffuMvity 
can be de te rmined  another  way a l so .  It follows f rom (11) that  

1' sT  (0, s) 4a g-----~a sh & 

After  different iat ing the lef t -hand side of this express ion  and using (11), we obtain 

6 2 % (0 
a = - -  (17) 

4 % (t) 

Here  ~P3 and r a re  de te rmined  f rom the following re la t ions:  
t "c 

%(0 = ,f r(0,  q(0) r(0,  r - -0)  d0a , (17') 
0 0 

t 

1 
0IT(0, z - - 0 )  q (0) - -  q (x - -  0) T (0, 0)1 

2 

_L 0 t 

X i{( '~- -0)  T(0, "r--0) dq(O)do q(~--O) dT(O,do O) dOdT. (17") 

S imi la r  calculat ions lead to re la t ions  for de termining k and a when the t e m p e r a t u r e  at the point x =5[2 is known. 
Omitting the in te rmedia te  calculat ions,  we obtain finally 

1 V 2aZ(p (t) a?(t) 
2~---~- (6 /2)2 , ( t )  2~(t) ' (18) 

where cp. ~, and Y a re  d e t e r m i n e d f r o m  Eqs .  (15 ' ) - (15 ' " )  wi thT(6/2 ,  t ) subs t i tu ted  for  T(0, T). Theva lue  of 
the the rmald i f fus iv i ty  which is neededto  calculate  X f rom (18) can be de te rmined  e i ther  f rom Eq.  (16) with 
6 i/2 subst i tuted for  5i, or  f rom the expres s ion  

(6/2) 2 q~ (t) 
a == - -  (19) 

4 ap (t) 

The values of (p and ~b r e p r e s e n t  the same  in tegra lcombinat ions  as (17') and (17") with T(6/2 ,  t) subst i tuted 
for  T(0, t). Equation (19) is obta ined in the same  way as (17) by using the re la t ion  between the Laplace t r a n s -  
f o rms  of q(t) andT(6 /2 ,  t).  

Calculat ions s i m i l a r  to those p resen ted  above p e r f o r m e d  for  a solid cyl inder  and spherewi th  aknown 
sur face  t e m p e r a t u r e  and heat  flux on the sur face  lead to re la t ions  of the fo rm (5) and (6). In these  equations 6 
m u s t b e  r e p l a c e d b y  the radius  of the cyl inder  or  sphere ,  f=1/2 f o r a  cyl inder  and f= --1/2 for  a sphe re .  

Thus ,  f rom the re la t ions  obtained, the values of the t he rma l  conductivity and diffusivity eanbe  de te rmined  
s imul taneously  f rom a m e a s u r e m e n t  of unsteady t e m p e r a t u r e s  in var ious  shaped sample s .  In con t ras t  with 
exist ing methods ,  the requ i red  p a r a m e t e r s  a r e  e x p r e s s e d  explicit ly in t e r m s  of exper imenta l ly  known t e m p e r a -  
tures  and heat  f luxes.  The integral  combinations enter ing the computing fo rmulas  a r e  eas i ly  calculated ona 
computer  without construct ing compl ica ted  a lgor i thms .  F igure  1 shows the r e su l t s  of computer  calculat ions 
of the the rmophys ica l  p a r a m e t e r s  of a flat  plate the rmal ly  insulated f rom one s ide.  The "exper imenta l"  values  
of the t e m p e r a t u r e s  were  obtained by solving the forward  problem for heat-f lux densi t ies  which a r e  constant  and 
v a r y l i n e a r l y  with t ime .  The plate was i0 m m  thick, hada  t he rma l  conductivity ~,=40 W / m  �9 ~ and a t h e r -  
ma l  diffusivity a =0.04 m2/h.  Theda ta  in Fig .  1 show tha t the  ea leu la tedva lues  of ~, and a converge r a t h e r  
rapidly to the values a s s u m e d t o  solve the fo rwardhea t ing  p rob l em.  It should be noted that the la rge  difference 
between the calculated a n d a s s u m e d  values of h and a a t e a r l y t i m e s  r e su l t  f rom the fac t tha t  at  s m a l l v a l u e s  of t 
the sample  behaves  the rmal ly  like a semibounded body whose sur face  t e m p e r a t u r e  is de te rmined  by the combina-  
tion key and not by X and a separa te ly .  T h e r e f o r e ,  withthe caiculat ional  accu racy  which can be achieved in 
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pract ice  it is impossible in the initial per iodof  heating or  coolingto reveal  the finite thickness of the sample 
which is necessa ry  for successful  calculation with Eqs.  (6) and (7). On the other hand, the determination of 
the pa ramete r  ),c T from the express ion 

*i (20) 

which is easily obtained from the relation between Laplace t ransforms for a semiboundedbody [q(s)/T(s)] 2-- 
s(kcT), shows that the calculated values of this pa ramete r  in the initial period of heating or  cooling are  in good 
agreement  with the values assumed in the solution of the forward problem . Thus, the simultaneous calculation 
of kcT by Eq. (20) and k and a by (6) and (7) in the present  case enables one to judge from the nature of the var ia -  
tion of these pa ramete r s  both the accuracy  of the computational scheme chosen and the legit imacy of using the 
recommended relat ions as a whole for the available experimental  data. 

N O T A T I O N  

T, tempera ture  of sample; x, coordinate; 5, thickness of flat plate; ~, thermal  conductivity; a, thermal  
diffusivity; c, specific heat; T, density; q, heat flux density; t, 7, 0, t ime.  
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P H O T O E M I S S I O N  M E T H O D  OF M E A S U R I N G  T E M P E R A T U R E  

K.  N.  K a s p a r o v  UDC 536.521.082.52 

A photoemission method of measur ing  temperature  is presented,  and the range of its application 
is indicated. Expressions are  obtained for calculating the systemat ic  e r r o r ,  and a nomogram is 
given for determining it. 

The photoemiss ion method of measur ing  tempera ture  for a continuous emission spectrum is based on the 
dependence of the energy distribution of photoelectrons in the photoemission effect on the energy distribution in 
the spectrum of the radiation source [1, 2]. The tempera ture  of a body is determined from the change in the 
energy distribution of photoelectrons,  i . e . ,  the increase in the number of photoelectrons with the maximum 
kinetic energy Wma x =eUmax with increasing tempera ture .  

By considering Einste in 's  equation for the photoelectric effect 

eUma x = h (v - -  %) (1) 

or 

Wma x =:/e t (v) 

together with Planck 's  equation forblackbody radiation 

r0 = fz(v, T) (2) 

it is c lear  that an implicit relat ion exists between the maximum kinetic energy of the photoelectrons and the tem- 
perature  T of the body whose radiation gave r ise  to the photoelectric effect.  It follows from (2) that the frequency 
u is a function of the spectra l  density of the blackbody radiation energy r 0 and the temperature  

v = q~ (r0, T) (3) 
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